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Abstract

Many school districts have objectives regarding how students of different races, ethnicity or
religious backgrounds should be distributed across schools. A growing literature in mechanism
design is introducing school choice mechanisms that attempt to satisfy those requirements.
We show that mechanisms based on the student-proposing deferred acceptance may fail to
satisfy those objectives, but that by using instead the school-proposing deferred acceptance
together with a choice function used by the schools, which incorporates a preference for
satisfying them, can optimally approximate the diversity objectives while still satisfying an
appropriate fairness criterion. We provide analytical results which show that the proposed
mechanism has a general ability to satisfy those objectives, as opposed to some currently
proposed mechanisms, which may yield segregated assignments.
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1. Introduction

Over the last five decades a multitude of policies have been implemented, with varying
degrees of success, to reduce historical and emerging racial, religious, and ethnic segregation
at the school level. Most of the policies used to achieve that objective aim to either establish
maximum quotas for the so-called majority students or to give higher priority to minority
students in either all or part of the seats available.

Since the seminal work on the subject by Abdulkadiroğlu and Sönmez [5], a growing
number of papers have used mechanism design principles to obtain school assignments that
achieve some balance between diversity objectives, fairness, efficiency, and other properties.
One class of such mechanisms, which we denote affirmative action mechanisms, expands the
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set of schools that certain types of students have access to by giving them higher priority
and/or reserving some seats in the schools to be filled by those students, making the seats
otherwise available to everyone.1 One example of an affirmative action mechanism is giving
higher priority to racial minorities for a number of seats in schools [17, 13, 7]. Another class
of mechanisms takes diversity as an objective instead, and accommodates other properties,
such as fairness or constrained efficiency. We denote that class of mechanisms diversity
implementation mechanisms. Mechanisms with majority quotas (which enforce a maximum
number of “majority type” students in each school) or others that enforce certain ratios among
types of students are examples of diversity implementation mechanisms.

For problems such as university admission – which is in many cases determined by student
performance in tests and high-school grades – affirmative action mechanisms could increase
the diversity of cohorts by improving the access of minority students to more competitive
universities. In the case of school choice, however, that it is not necessarily the case. Typically,
the criteria for admission rely on aspects such as residence location, presence of siblings in
the school, special needs, etc. That is, minority students are not necessarily disadvantaged
with respect to others in their access to desired schools, and thus the use of such mechanisms
may not help in obtaining more diverse groups of students.

We introduce a new diversity implementation mechanism that differs from others available
in the literature in two main aspects: the incorporation of diversity objectives as an element
of fairness and a more pragmatic interpretation of those objectives, where a given distribution
of types in a school is used as a desired target instead of a strict objective.

From a theoretical perspective, one key aspect of this paper is our use of the school-
proposing deferred acceptance procedure while using a choice function for the schools that
incorporates a preference for groups of students that satisfy the diversity requirements. While
college admissions problems are two-sided matching problems in which the welfare and in-
centives of both sides are under consideration, in a school choice problem the seats in the
schools are simply objects to be allocated to students. Therefore the school’s choice function
can be designed in such a way that the property of stability and the school-optimality of
the stable allocations selected induces the desired properties on the allocation. Moreover, as
shown in section 3, the change from using the student-proposing to school-proposing deferred
acceptance has significant effects on the satisfaction of diversity objectives.

1.1. Relation with the literature
The Student-Proposing Deferred Acceptance and the College-Proposing Deferred Accep-

tance mechanisms (SPDA and CPDA) were first introduced by Gale and Shapley [15]. While
Dubins and Freedman [11] show that when using the SPDA as a direct mechanism no student
or group of students can be made better-off by misrepresenting their preferences, Gale and
Sotomayor [16] show that this is not normally the case when using CPDA. Furthermore, Roth

1The term affirmative action is normally used in a broader sense across the literature. Mechanisms such as
those in Abdulkadiroğlu and Sönmez [5] and Abdulkadiroğlu [1] are denoted in those papers as implementing
affirmative action while in our terminology those are diversity implementation mechanisms.
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[21] shows that there is no stable mechanism that is immune to manipulation by colleges.2
The incentive and welfare properties of both mechanisms come into play in the context of

college admissions in Balinski and Sönmez [10]. In their model there is no need for strategic
or welfare considerations on the part of colleges. As a result, the SPDA is suggested as the
ideal mechanism for the student placement problem.

The subsequent literature on college admissions and school choice, as well as their appli-
cations, focuses on the use of the SPDA procedure (see 5, 3, 2, and 4). When concerns about
the diversity of the distribution of students across schools were introduced in the mechanisms,
that choice persisted [13, 12, 14, 19, 17]. As shown in section 3, however, those mechanisms
may to a great extent fail to affect the distribution of students by type in the schools. By
combining the use of the CPDA procedure with a choice function used by the schools which
represents a preference for satisfying the diversity objectives, we are able to obtain assign-
ments that implement (or approximate) those objectives in a wider range of scenarios while
still satisfying a fairness criterion.

The paper proceeds as follows. Section 2 introduces the model and the SPDiv mechanism.
Section 3 presents the analytical results of the outcomes generated by the SPDiv mechanism
and student-proposing affirmative action mechanisms. Proofs omitted from the main text
can be found in the Appendix.

2. Model

A school choice with diversity problem consists of a tuple
〈
S,C, T, τ, q, q,�S,�C

〉
:

1. A finite set of students S = {s1, . . . , sn}
2. A finite set of schools C = {c1, . . . , cm}
3. A finite set of types T = {t1, . . . , tk}
4. A function τ : S → T where τ (s) is the type of student s . We denote by St (I) the set

of students in I ⊆ S of type t, that is, St (I) = {s ∈ I : t = τ (s)}.
5. A capacity vector q = (qc1 , . . . , qcm) where qc is the capacity of school c ∈ C.
6. For each school c, a vector qTc = (qt1c , . . . , q

tk
c ) of diversity objectives, where qtc is the

minimum desired number of students with type t at school c, where
∑

t∈T q
t
c ≤ qc . Let

q =
(
qTc1 , . . . , q

T
cm

)
.

7. Students’ preference profile �S= (�s1 , . . . ,�sn), where �s is a strict ranking over
C ∪ {s}, where s represents remaining unmatched to any school. If s �s c, school c is
deemed unacceptable to student s.

8. Schools’ priority profile �C= (�c1 , . . . ,�cm), which is a collection of complete and
strict rankings over the students in S∪{∅}. If ∅ �c s, student s is deemed unacceptable
to school c.

2Whereas Dubins and Freedman [11] assume that the colleges’ selection of the students can be represented
by ranking them and choosing the most preferred ones up to a capacity constraint, similar results are shown
for more general choice functions in, among others, Hatfield and Kojima [18] and Abdulkadiroğlu [1].
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An assignment µ is a function from C ∪ S to subsets of C ∪ S ∪ {∅} such that: (i) µ (s) ∈
C ∪ {s} and |µ (s)| = 1 for every student s,3 (ii) |µ (c)| ≤ qc and µ (c) ⊆ S for every school c
and (iii) µ (s) = c if and only if s ∈ µ (c).

For a student s, µ (s) is the school to which s is assigned under µ, and for a school
c, µ (c) is the set of students that are assigned to school c under µ. For a given school
choice with diversity problem, we denote byM the set of all assignments. A set of students
I ⊆ S enables diversity at school c if for all t ∈ T , |St (I)| ≥ qtc. An assignment µ
fully implements diversity if for every school c, µ (c) enables diversity at c. If there is an
assignment µ∗ ∈M where µ∗ fully implements diversity, we say that diversity objectives are
feasible. We say that a student s justifiably claims an empty seat at school c under
the assignment µ if s is acceptable to c, |µ (c)| < qc and c �s µ (s). An assignment µ is
non-wasteful if no student justifiably claims an empty seat at some school. An assignment
is individually rational if for every student s, µ (s) �s s and for every school c and every
student s′ ∈ µ (c), s′ �c ∅. A traditionally desirable condition for an assignment to satisfy
is that of having no student justifiably envying another. We define that formally, using the
notion of fairness in Balinski and Sönmez [10]:

Definition 1. A student s justifiably envies student s′ under the assignment µ, where
c = µ (s′), if and only if c �s µ (s) and s �c s′. An assignment µ satisfies no justified envy
if no student justifiably envies another under µ. An assignment µ is fair if it is non-wasteful
and satisfies no justified envy.

Although an assignment that is fair always exists [15, 10, 5], Echenique and Yenmez [12]
show that an assignment that is fair and that fully implements diversity may not exist. In
fact, fair assignments may completely ignore the diversity objectives, as shown in the example
below:

Example 1. Consider the following school choice with diversity problem:

S = {s1, s2}
T = {t1, t2} �s1 : c2 c1 �c1 : s2 s1

St1 (S) = {s1} , St2 (S) = {s2} �s2 : c2 c1 �c2 : s2 s1
C = {c1, c2}

Capacities are qc1 = qc2 = 1, diversity objectives are qTc1 =
(
qt1c1 , q

t2
c1

)
= (0, 0) and qTc2 =(

qt1c2 , q
t2
c2

)
= (1, 0). Consider the following assignments:

µ =

(
c1 c2
s1 s2

)
µ′ =

(
c1 c2
s2 s1

)
Diversity objectives are feasible, since the assignment µ′ fully implements diversity. The

unique fair assignment is µ, which doesn’t fully implement diversity.

3We will abuse notation and consider µ (s) as an element of C, instead of a set with an element of C.
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Notice that the assignment µ doesn’t satisfy the diversity objective of having a student
of type t1 at school c2 while at the same time student s1, who is of that type, would prefer
c2 to her school under µ.

If we take the normative approach to the concept of fairness, as we do in this paper,
the fairness criterion should respond to the fact that whenever the schools’ priorities are
“incompatible” with the diversity objectives, those objectives are ignored when using the
above concept of fairness. For example, consider a city with two schools: one in a black
and the other in a white neighborhood, and consider that schools give higher priority to
students who live close to the school.4 Then if the schools have objectives of having an equal
distribution of white and black students, an assignment in which all black students go to one
school and all white students go to the other school is fair, even if there are students who
would prefer to change their schools and join students of a different type.5

A mechanism which produces assignments that eliminate those distortions must, there-
fore, balance the two criteria when deciding which students will be assigned to any given
school: priorities and diversity objectives. A choice function generated by reserves, as de-
fined by Echenique and Yenmez [12], chooses the set of students that satisfies as many
diversity objectives as possible while pursuing a school’s priority, and is used by schools in
our mechanism. We describe it formally below.

Let Cc : 2S → 2S be the choice function at school c for the school choice with diversity
problem

〈
S,C, T, τ, q, q,�S,�C

〉
. Fix any S ′ ⊆ S and let I ⊆ S ′ be the set of students

acceptable to c among S ′. Cc (S ′) is obtained by the following procedure.

1. Step 0: If |I| ≤ qc, Cc (S ′) = I and the procedure ends. Otherwise if |I| > qc, proceed
to the steps below.

2. Step 1: If |St1 (I)| < qt1c , accept all students in St1 (I) . Otherwise accept the top qt1c
students in St1 (I) with respect to �c. Denote by Ψt1 (I) the set of students accepted
in this step.

3. Step 1 < ` ≤ k: If |St` (I)| < qt`c , accept all students in St` (I) . Otherwise accept
the top qt`c students in St` (I) with respect to �c. Denote by Ψt` (I) the set of students
accepted until step `.

4. Final step: If |Ψtk (I)| < qc, accept the top qc − |Ψtk (I)| students in I\Ψtk (I) with
respect to �c.

The procedure above consists, therefore, of reserving qtc seats for each type t and filling them
with the top students of that type with respect to �c (steps 1 to k). If there are not enough
students to fill some of the reserved seats, those are made available to students of any type,
together with the open seats (final step).

The notion of fairness which will result from using the choice function Cc in our mechanism
allows for the diversity objectives to be grounds for a kind of “justified envy” when those are

4For simplicity assume that only those in the white (black) neighborhood live close to the school in the
white (black) neighborhood.

5This observation also applies to the concept of same-type fairness, as in Ehlers et al. [13] and Troyan and
Fragiadakis [22], where an assignment is fair if there is no justified envy between students of the same type.
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not being satisfied, as follows:

Definition 2. A student s justifiably demands a seat in school c if c �s µ (s) and
either: (i)

∣∣Sτ(s) (µ (c))
∣∣ < q

τ(s)
c , (ii) There is a student s′ ∈ µ (c) such that τ (s′) = τ (s) and

s �c s′ or (iii) There is t′ ∈ T and s′ ∈ St′ (µ (c)) such that
∣∣St′ (µ (c))

∣∣ > qt
′
c and s �c s′.

An assignment is fair-with-diversity if it is individually rational, non-wasteful, and if
no student justifiably demands a seat in any school.

An assignment µ is blocked by a pair if there are a student s and a school c such that
c �s µ (s) and s ∈ Cc (µ (c) ∪ {s}). If the choice function generated by reserves Cc is used
for assigning students to schools, an assignment being individually rational and not blocked
by a pair is equivalent to it being fair-with-diversity, as shown in the remark below.6

Remark 1. Suppose that a pair (s, c) blocks an assignment µ. This means that c �s
µ (s) and s ∈ Cc (µ (c) ∪ {s}). The last condition means that either (i) |µ (c)| < qc or
(ii)

∣∣Sτ(s) (µ (c))
∣∣ < q

τ(s)
c or (iii) ∃ s′ ∈ Sτ(s) (µ (c)) : s �c s′ or (iv) ∃s′ ∈ µ (c) :∣∣Sτ(s′) (µ (c))

∣∣ > q
τ(s′)
c and s �c s′. Since c �s µ (c), condition (i) means that µ is waste-

ful, and condition [(ii) or (iii) or (iv)] means that student s justifiably demands a seat in
school c.

The set of fair-with-diversity assignments is a superset of the set of fair assignments that
fully implement diversity:

Proposition 1. If µ is fair and fully implements diversity, then µ is also fair-with-diversity.

The proof is simple and therefore omitted. Notice, however, that the assignment µ′ in
Example 1 is fair-with-diversity and fully implements diversity, but is not fair. The im-
plication in Proposition 1 is, therefore, strict. The following result, however, shows that
a fair-with-diversity assignment that fully implements diversity might not exist even when
diversity objectives are feasible:

Proposition 2. There might not be an assignment that is fair-with-diversity and fully im-
plements diversity, even if diversity objectives are feasible.

Proof. Consider the following school choice with diversity problem:

S = {s1, s2}
T = {t1, t2} �s1 : c1 c2 �c1 : s1 s2

St1 (S) = {s1} , St2 (S) = {s2} �s2 : c2 c1 �c2 : s2 s1
C = {c1, c2}

Capacities are qc1 = qc2 = 1, diversity objectives are qTc1 =
(
qt1c1 , q

t2
c1

)
= (0, 0) and qTc2 =(

qt1c2 , q
t2
c2

)
= (1, 0). Consider the assignments µ and µ′, where µ (c1) = {s1}, µ (c2) = {s2},

6While most of the literature denotes an assignment that is individually rational and not blocked by a pair
as pairwise stable, in this paper we refrain from using that definition, to emphasize the fact that the properties
of an assignment which is fair-with-diversity constitute a normative choice of the mechanism designer, and
not a characteristic of an assignment given the schools’ choice functions.
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µ′ (c1) = {s2} and µ′ (c2) = {s1}. Diversity objectives are feasible, since the assignment
µ′ fully implements diversity. The unique fair-with-diversity assignment is µ, which doesn’t
fully implement diversity.

Even though it is not always possible to obtain an assignment that fully implements
diversity, we would like to have the alternative of choosing one that is as “close” to that
objective as possible. In order to achieve that, we first propose the following partial order:

Definition 3. Let >q be the partial order over the set of assignmentsM such that µ′ >q µ
if :

1. For all c ∈ C and t ∈ T such that |St (µ (c))| ≤ qtc, |St (µ′ (c))| ≥ |St (µ (c))| and
2. There are c′ ∈ C and t′ ∈ T such that

∣∣St′ (µ (c′))
∣∣ < qt

′

c′ and
∣∣St′ (µ′ (c′))∣∣ > ∣∣St′ (µ (c′))

∣∣.
Denote µ′ 6>q µ if µ′ >q µ is false.

In other words, µ′ >q µ if µ′ has fewer seats “reserved” for students of certain types, which
are occupied by students who are not of those types when compared to µ. Notice that if
µ′ >q µ then it cannot be the case that both µ′ and µ enable diversity in every school. As an
example, suppose that there is only one school c with 100 seats and the diversity objective
says that at least 50 of them should be occupied by minority students. If µ assigns 40 minority
students to c and µ′ assigns 45, then µ′ >q µ. However, if µ′′ assigns 51 minority students
to c and µ′′′ assigns 55, both µ′′ 6>q µ′′′ and µ′′′ 6>q µ′′. Increasing the number of minority
students after the diversity objective is satisfied does not make an assignment greater with
respect to >q. We now formally define a fair assignment with maximal diversity.

Definition 4. An assignment µ is fair-with-maximal-diversity if µ is fair-with-diversity
and there is no assignment µ′ such that µ′ is fair-with-diversity and µ′ >q µ. A mechanism is
fair-with-maximal-diversity if for every school choice with diversity problem the assignment
it generates is fair-with-maximal-diversity.

An assignment µ is thus fair-with-maximal-diversity if µ either fully implements diversity
or µ does not fully implement diversity but there is no assignment that is fair-with-diversity
and “further satisfies” some diversity objective in some school without jeopardizing another
in the same or some other school.

We now proceed to show some important properties of the choice function generated by
reserves Cc.

Definition 5. A choice function C satisfies the substitutability condition if for all z, z′ ∈ X
and Y ⊆ X, z 6∈ C (Y ∪ {z}) =⇒ z 6∈ C (Y ∪ {z, z′}).

The condition below, together with substitutability, suffices for the existence of a matching
that is individually rational and not blocked by a pair [9].

Definition 6. A choice function C satisfies irrelevance of rejected contracts (IRC) if ∀I ⊂
S,∀s ∈ S\I, s 6∈ C (I ∪ {s}) =⇒ C (I) = C (I ∪ {s})
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Echenique and Yenmez [12] show that choice rules generated by reserves satisfy substi-
tutability and IRC:

Lemma 1 (Echenique and Yenmez [12]). The function Cc satisfies the substitutability con-
dition and IRC.

Remark 2. Let I ⊆ S and c ∈ C be such that every student in I is acceptable to school c
and for every t ∈ T , St (I) ≥ qtc. Then Cc (I) enables diversity at c.

The remark above shows that whenever the set of students available is such that there are
subsets of them which enable diversity at c, Cc selects one of them. As we show in section 3,
however, this does not guarantee that the outcome of a deferred acceptance procedure fully
implements diversity even when it is feasible.

Lemma 2. Let |Cc (I)| < qc and I ′ ⊆ I be the set of acceptable students for school c in I.
Then the following are true: (i) Cc (I) = I ′, (ii) Cc (I ∪ {s}) = Cc (I) ∪ {s} for any s ∈ S if
s is acceptable to c and (iii) |Cc (I ∪ J)| > |Cc (I)| for any J ⊂ S such that for every s ∈ J ,
s is acceptable to c and J\I 6= ∅.

The results presented in the lemma above come easily from the definition of the procedure
for Cc.

The School-Proposing Diversity (SPDiv) mechanism that we propose consists of applying
the school-proposing deferred acceptance procedure described in Roth [20] using Cc as the
schools’ choice function:

1. Step 1: Let Sc (1) = S for all c ∈ C
(a) Each school c proposes to the students in Cc (Sc (1)).
(b) Each student s that received a proposal from one or more schools accepts her most

preferred acceptable one according to �s and rejects the rest of the schools. Let,
for all c ∈ C, Rc (1) be the set of students who rejected school c at this step.

2. Step k: Let Sc (k) = Sc (k − 1) \Rc (k − 1) for all c ∈ C.
(a) Each school c proposes to the students in Cc (Sc (k)).
(b) Each student s that received a proposal from one or more schools accepts her most

preferred acceptable one according to �s and rejects the rest of the schools. Let,
for all c ∈ C, Rc (k) be the set of students who rejected school c at this step.

The procedure terminates at any step T in which no rejections are issued, and the resulting
assignment µ is such that for every school c, µ (c) = Cc (Sc (T )) as defined above. Students
who are not in the choice set of any school are left unmatched.

The following result is based on an extension of a theorem in Roth [20] for cases in which,
as in this paper, choice functions are the primitives, instead of preference relations:

Lemma 3. Suppose that students’ preferences are strict and that schools use the choice
function Cc. Then the assignment µC which is the outcome of the school-proposing deferred
acceptance procedure is individually rational and not blocked by a pair. Moreover, µC is
school-optimal in the sense that for each school c and assignment µ which is also individually
rational and not blocked by a pair, µC (c) = Cc

(
µC (c) ∪ µ (c)

)
.
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Lemma 4. Let µ and µ′ be fair-with-diversity assignments. If for every c ∈ C, µ (c) =
Cc (µ (c) ∪ µ′ (c)) then µ′ 6>q µ .

Proof. Suppose not. Then µ′ >q µ and therefore there is c ∈ C and t ∈ T such that
|St (µ (c))| < qtc and |St (µ′ (c))| > |St (µ (c))|. That is, there is at least one student s
of type t who is in µ′ (c) but not in µ (c), implying that µ′ (c) \µ (c) 6= ∅. By individual
rationality, both µ (c) and µ′ (c) contain only acceptable students for c, µ (c) = Cc (µ (c)) and
µ′ (c) = Cc (µ′ (c)).

If |µ (c)| < qc, then by Lemma 2 and the fact that µ′ (c) \µ (c) 6= ∅, |Cc (µ (c) ∪ µ′ (c))| >
|Cc (µ (c))|. But then |Cc (µ (c) ∪ µ′ (c))| > |µ (c)| which implies µ (c) 6= Cc (µ (c) ∪ µ′ (c)), a
contradiction. Thus, |µ (c)| = qc and the procedure for Cc (µ (c) ∪ µ′ (c)) ends after the final
step.

Since |St (µ′ (c))| > |St (µ (c))|, there is at least one student s′ ∈ µ′ (c) such that τ (s′) =
t and s′ /∈ µ (c) . Since |St (µ (c))| < qtc, student s′ is accepted in the step associated
with t in Cc (µ (c) ∪ µ′ (c)). As a consequence, s′ ∈ Cc (µ (c) ∪ µ′ (c)) and thus µ (c) 6=
Cc (µ (c) ∪ µ′ (c)), a contradiction.

Putting it all together we get our main result:7

Theorem 1. The SPDiv mechanism is fair-with-maximal-diversity.

Proof. Let µC be the outcome of the SPDiv mechanism. By remark 1, lemmas 1 and 3, µC is
fair-with-diversity. By lemmas 3 and 4, for any fair-with-diversity assignment µ′, µ′ 6>q µC .
As a consequence, µC is fair-with-maximal-diversity.

3. Comparative Analysis

In order to evaluate the assignments in terms of the distribution of students across schools,
we define two classes of assignments that represent the two extremes: one in which students
are completely segregated by their types and one in which the distribution of types in the
set of students in each school is identical to the distribution of the population as a whole.
Although it is not necessarily the case that those are the designer’s targets, the ability of the
mechanism to attain such distribution is a good measure of how successful it is for general
objectives. We now define those formally and give simple examples of both:

Definition 7. An assignment µ maximizes segregation if for every school c ∈ C, s, s′ ∈
µ (c) =⇒ τ (s) = τ (s′) .

Definition 8. Diversity objectives mirror the population distribution if for every c ∈ C

and t ∈ T , qtc =

⌊
qc|St(S)|
|S|

⌋
. An assignment µ minimizes segregation if µ fully implements

diversity when the diversity objectives mirror the population distribution.

7In a version of their paper published in September 2014, Ehlers et al. [13] show simultaneous and inde-
pendent work presenting this property of the school-proposing deferred acceptance mechanism.
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Example 2. Suppose that C = {c1, c2}, S = {s1, s2, s3, s4}, T = {t1, t2}, St1 (S) = {s1, s2}
and St2 (S) = {s3, s4}. The assignment µ, where µ (c1) = {s1, s2} and µ (c2) = {s3, s4}
maximizes segregation, while the assignment µ′, where µ′ (c1) = {s1, s3} and µ (c2) = {s2, s4},
minimizes segregation.

We denote the partition of the students by type by S = S1 ∪ · · · ∪ Sk, where for every
i ∈ {1, . . . , k} and s ∈ Si, τ (s) = ti. We consider a simplified configuration in which the
number of students of each type is the same, that is, |Si| = |Sj| for all i, j, every school
has the same capacity q and the number of seats in schools equals the number of students
(|S| = q |C|). In order to avoid issues related to fractional values throughout the analysis we
will, for any given value of k (the number of types of students), assume that the number of
students is such that |S| = n1n2k

2 and that the number of schools is such that |C| = n2k,
for some n1, n2 ∈ N. As a result, q = n1k and for every i, |Si| = n1n2k and q|Si|

|S| = n1.
Our first result shows that the SPDiv mechanism generates assignments that minimize

segregation regardless of students’ preference profiles or schools’ priorities.

Theorem 2. Every assignment generated by the SPDiv mechanism minimizes segregation
when the diversity objectives mirror the population distribution.

We now consider two scenarios with a generalization for multiple types of students in the
Deferred Acceptance with Minority Reserves (DAMR) mechanism, proposed in Hafalir et al.
[17], which is essentially the student-proposing deferred acceptance version of the SPDiv
mechanism.8 The first scenario below is one in which students of each type have an exclusive
set of schools that are preferred by those students to all other schools. This class of preferences
accommodates, among other things, a situation that is commonly observed: students (and
their parents) have a preference for schools that historically have a significant proportion of
students of their own type.

Scenario 1. (Favorite schools for each type) There is a partition of schools C = C1∪· · ·∪Ck
where |C1| = · · · = |Ck| and for every student si ∈ Si and j 6= i it follows that ci ∈ Ci and
cj ∈ Cj implies ci �si cj.

Now we define a scenario in which the set of schools can be partitioned such that the
preference among schools in different partitions is perfectly correlated across students, but
not between schools in them. This is common when, for example, schools in wealthier neigh-
borhoods are perceived as being better than those in less wealthy neighborhoods.

Scenario 2. (Tiered schools) There is a partition of schools C = C1 ∪ · · · ∪ Ca, with a ≥ k,
where |C1| = · · · = |Ca| and for every student s ∈ S, schools ci ∈ Ci and ci+1 ∈ Ci+1, student
s’s preferences are such that ci �s ci+1.

8We use a simple extension of the DAMR mechanism to accommodate for more than one type of student
(17 consider only two types: minority and majority). This extension can also be found in Echenique and
Yenmez [12] and is a special case of the Deferred Acceptance Procedure with Soft Bounds in Ehlers et al.
[13], where there are no upper quotas. See also Kominers and Sönmez [19] and Westkamp [23] for more
generalizations.
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The following property connects DAMR outcomes with the set of fair-with-diversity as-
signments:

Lemma 5. Every assignment µ generated by the DAMR mechanism is fair-with-diversity.

Proof. By Lemma 1 and Theorem 1 in Aygün and Sönmez [8], µ is individually rational and
is not blocked by a pair. Thus µ is fair-with-diversity.

We now consider the application of the DAMR mechanism in those different scenarios:

Proposition 3. Every assignment generated by the DAMR mechanism maximizes segregation
in scenario 1.

It is easy to see that the result in proposition 3 applies not only to the DAMR mechanism,
but to any mechanism that uses the student-proposing deferred acceptance procedure when
the school’s choice function satisfies the substitutability condition and the law of aggregate
demand (property introduced in Alkan [6]).

Proposition 4. Let µ be an assignment generated by the DAMR mechanism when the diver-
sity objectives mirror the population distribution, and let C∗ ⊆ C be the set of schools such
that if c∗ ∈ C∗, µ (c∗) enables diversity in c∗. Then in scenario 2 |C

∗|
|C| ≥

a−1
a
.

The lower-bound in the proposition may be binding. As a result, in a situation where
there are only two types of students (minority and majority), for example, half of the schools
may constitute a totally segregated subset of them, as shown in the example below.

Example 3. Consider the following school choice with diversity problem:

�s1 : c1 c2 c3 c4
S = {s1, s2, s3, s4, s5, s6, s7, s8} �s2 : c2 c1 c3 c4

T = {t1, t2} �s3 : c1 c2 c3 c4 �c1 : s1 s2 s3 s4 s5 s6 s7 s8
St1 (S) = {s1, s2, s3, s4} �s4 : c2 c1 c3 c4 �c2 : s1 s2 s3 s4 s5 s6 s7 s8
St2 (S) = {s5, s6, s7, s8} �s5 : c1 c2 c3 c4 �c3 : s1 s2 s3 s4 s5 s6 s7 s8

C = {c1, c2, c3, c4} �s6 : c2 c1 c3 c4 �c4 : s1 s2 s3 s4 s5 s6 s7 s8
�s7 : c1 c2 c4 c3
�s8 : c2 c1 c4 c3

Capacities are qc = 2, diversity objectives are qticj = 1, for all i ∈ {1, 2} and j ∈ {1, 2, 3, 4}.
The assignment generated by the DAMR mechanism is µ, as follows:

µ =

(
c1 c2 c3 c4

s1, s5 s2, s6 s3, s4 s7, s8

)
Note that both µ (c1) and µ (c2) enable diversity in those schools but the remaining

population is segregated: to school c3 only students of type t1 are assigned and to school c4
only students of type t2.

11



When a = |C|, that is, the set of schools is partitioned such that each partition has only
one school, the preferences in scenario 2 are equivalent to a situation in which all students
have the same preferences among schools. It is easy to see that proposition 4 leads to the
following corollary:

Corollary 1. Every assignment generated by the DAMR mechanism minimizes segregation
when all students have the same preferences.

The value of a in scenario 4 indicates, in a way, the degree of correlation among students’
preferences over schools: the larger the value of a, the more similar they are. Proposition
4 therefore shows that the DAMR mechanism may be an adequate choice of mechanism in
situations where students’ preferences follow, for example, a widely known ranking, but less
so when preferences are more heterogeneous.
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AppendixA. Proofs

Lemma 3
This proof consists of reproducing the steps in the same result given in Roth [20] under the

more general assumption that the primitives are choice functions that satisfy substitutability
and IRC instead of choice functions derived from preferences over sets of students.

We make use of some definitions and the following results in Roth [20], which remain
valid without assuming IRC:
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Lemma 6. [20] Let s∗ ∈ S1 and s∗ ∈ Cc (S1 ∪ S2). Then s∗ ∈ Cc (S2 ∪ {s∗}).

Proposition 5. [20]Offers remain open: for every school c, if s ∈ Cc (Sc (k − 1)) and is not
rejected by student s in step k − 1, then s ∈ Cc (Sc (k)).

Proposition 6. [20]Rejections are final: If s rejects school c at step k, then for any p ≥ k
student s would reject another proposal from c. In other words, if s (p) is the set of schools
that propose to student s at step p, she would never choose c out of {{s} ∪ s (p) ∪ {c}}.

For the next steps of the proof, however, in order to not have to assume that the choice
functions are derived from strict preferences over sets of students, we derive the results by
assuming that the choice function satisfies IRC. We will use the following lemma, which
comes easily from the definition of the IRC condition:

Lemma 7. Let Cc satisfy IRC and let X ⊆ S and Y = Cc (X) . Then, for any Z ⊆ X\Y ,
Cc (Y ∪ Z) = Cc (Y ).

Proposition 7. The outcome of the school-proposing deferred acceptance procedure above is
individually rational and is not blocked by a pair.

Proof. Let µC be the outcome of the procedure. First, note that for every student s, µC (s) �s
s, otherwise µC (s) would have been rejected by s. Now suppose that µC (c) is not individually
rational, and therefore Cc

(
µC (c)

)
6= µC (c). Then there is s such that s ∈ Cc (Sc (T ))

but s 6∈ Cc

(
µC (c)

)
. But since µC (c) ⊆ Sc (T ) this would violate the substitutability of

Cc, and therefore Cc

(
µC (c)

)
= µC (c). Now suppose that there is a student s and school

c such that c �s µC (s) and s ∈ Cc

(
µC (c) ∪ {s}

)
. By assumption and propositions 5

and 6 above, student s didn’t reject any proposal from school c, and therefore s ∈ Sc (T ).
Denote RT ≡ Sc (T ) \ (Cc (Sc (T )) ∪ {s}). Then Sc (T ) = µC (c) ∪ RT ∪ {s}, and therefore
µC (c) = Cc

(
µC (c) ∪RT ∪ {s}

)
= Cc

(
µC (c)

)
. Since students in RT are rejected, by IRC

Cc

(
µC (c) ∪ {s}

)
= Cc

(
µC (c)

)
. Contradiction with s ∈ Cc

(
µC (c) ∪ {s}

)
.

Proposition 8. The outcome of the procedure above, µC, is school-optimal in the sense that,
for each school c and every assignment µ which is individually rational and is not blocked by
a pair, µC (c) = Cc

(
µC (c) ∪ µ (c)

)
.

Proof. Suppose not. Then there exists an assignment µ∗ and a school c such that µ∗ is
individually rational, not blocked by a pair, and µC (c) 6= Cc

(
µC (c) ∪ µ∗ (c)

)
. We first show

that there is at least one student s ∈ Cc

(
µC (c) ∪ µ∗ (c)

)
such that s 6∈ µC (c) and s ∈ µ∗ (c).

If that isn’t the case, since µC (c) 6= Cc

(
µC (c) ∪ µ∗ (c)

)
, it must be that Cc

(
µC (c) ∪ µ∗ (c)

)
(

µC (c). But then all students in µ∗ (c) are rejected and by Lemma 7 Cc

(
µC (c) ∪ µ∗ (c)

)
=

Cc

(
µC (c)

)
= µC (c), where the second equality is proved in Proposition 7 and therefore

constitutes a contradiction.

We show that no student will reject an achievable school. A school c is achievable to
student s if there exists an assignment µ such that µ is individually rational, is not blocked
by a pair and s ∈ µ (c). The proof is by induction. By induction assumption, up to step
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k − 1 no student rejected any achievable school. Now suppose that student s rejects school
c, which is achievable for her, in favor of another school c′. It must then be that c′ �s c.
Moreover, since school c is achievable to s, there exists at least one matching µ′, where µ′
is individually rational and is not blocked by a pair, in which µ′ (s) = c. Since up to step
k − 1 no student rejected an achievable school, no student in S\Sc′ (k) can be in µ′ (c′) and
therefore µ′ (c′) ⊂ Sc′ (k). But since student s rejected school c in favor of c′ at step k, it
must be that s ∈ Cc′ (Sc′ (k)). Since µ′ is individually rational, µ′ (c) = Cc′ (µ

′ (c)). We have,
therefore, s 6∈ Cc′ (µ

′ (c)), µ′ (c′) ⊂ Sc′ (k) and s ∈ Cc′ (Sc′ (k)), which is a contradiction with
Cc′ satisfying substitutability.

Given that, it must then be that all students who have c as achievable remain available
until the last step of the algorithm and therefore µ∗ (c) ⊂ Sc (T ). Since µC (c) = Cc (Sc (T )) ⊂
Sc (T ), we can rewrite this as µC (c) = Cc

(
µC (c) ∪ µ∗ (c) ∪

(
µ∗ (c) \µC (c)

)
∪
(
Sc (T ) \µC (c)

))
.

By Lemma 7, Cc

(
µC (c) ∪ µ∗ (c) ∪

(
µ∗ (c) \µC (c)

)
∪
(
Sc (T ) \µC (c)

))
= Cc

(
µC (c) ∪ µ∗ (c)

)
.

That is, µC (c) = Cc

(
µC (c) ∪ µ∗ (c)

)
which is a contradiction to our initial assumption.

Theorem 2
Suppose, for the sake of contradiction, that schools’ diversity objectives mirror the popula-

tion distribution but the assignment µ generated by the SPDiv mechanism does not minimize
segregation. Then there is a school c ∈ C and a type ti ∈ T such that |Sti (µ (c))| < n1.
Then at some step ` in the deferred acceptance procedure of the SPDiv mechanism, the set
of students of type ti that rejected school c has more than (n1 − 1)n2k elements. Without
loss of generality, let ` be the earliest step at which this happens to some school for any type
(c may or may not be the only school for which that happens during step `.) Since students
consider all schools acceptable, all those students rejected c because another school proposed
simultaneously. By Proposition 2 in Roth [20], if a student receives an offer during a step of
the procedure, it may change its assignment over time, but will not become unmatched at
any subsequent step. Therefore, those students who rejected c are assigned to other schools.
But then at least one school c′ ∈ C, with c′ 6= c proposed to more than n1 students of type
ti during step `. This can only happen if some student of type ti is accepted during the final
step of the procedure for the choice function Cc′ . This implies that at the step associated
with some type tj 6= ti the number of students of type tj that rejected c′ at some step earlier
than ` is greater than (n1 − 1)n2k. Contradiction with ` being the earliest step at which this
happened.

Proposition 3
It is sufficient to show that, for any given i, every student si ∈ Si is accepted by some

school in Ci. Suppose that there is a student si ∈ Si that is not assigned to any school in Ci.
Since all schools in Ci are preferred by si to any other schools, si was rejected by all schools
in Ci. Since every student is acceptable by all schools and all students in Si have the same
type, every school c will simply accept the top qc students according to �c or all students
in case the number of those pointing to c is lower than qc. Thus, the only way in which a
student is rejected by a school is if that school has already accepted qc students. Notice that
since Cc satisfies the law of aggregate demand (see Echenique and Yenmez [12]), by the end
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of each step of the procedure the number of accepted students in each school never decreases.
Thus, by the end of step 1, since si was rejected by her first choice, at least qc students in
Si were accepted by schools in C ′i. By the end of step 2, at least 2qc students are accepted,
since the school mentioned in step 1 will still accept qc students by the end of step 2, and
the second-best school for si also accepts qc students. By repeating the argument, by the
end of step |Ci|, at least |Ci| qc students were accepted in the first |Ci| steps. But notice
that during the first |Ci| steps, students in Sj could have only pointed to schools in Cj, for
any j ∈ {1, . . . , k}. Thus there is at least |Ci| qc + 1 students in Si, which is a contradiction
with

∑
c∈C′i

qc = |Si|. Therefore, students in Si will all be assigned to schools in Ci and thus
µ (s) ∈ Ci =⇒ s ∈ Si.

Proposition 4
Let µ be the assignment generated by the DAMR mechanism. By Lemma 5, µ is fair-

with-diversity. Therefore µ is non-wasteful and thus every school is assigned qc students and
every student is assigned to a school. We show that when diversity objectives mirror the
population distribution, µ (c) enables diversity in every school c ∈ C1 ∪ · · · ∪ Ca−1. We will
prove by induction in the sets C1, . . . , Ca−1 when t > 1 since the case a = k = 1 is trivial.

Step 1: we want to show that for every school c ∈ C1, µ (c) enables diversity at c.
Let n3 be the integer such that n3 = |C1| = · · · = |Ca|. Since |C| = n2k, n3a = n2k. And

since a ≥ k, n3 ≤ n2. We must first show that there are at least n1n3 students of each type
t ∈ T in

⋃
c∈C1

St (µ (c)). Suppose not. Then there is at least one school c′ ∈ C1 such that
|St (µ (c′))| < n1. Since |St (S)| = n1n2k ≥ n1n3k and k > 1, then there is a student s′ such
that τ (s′) = t and µ (s′) 6∈ C1. But then c′ �s′ µ (s′) and s′ justifiably demands a seat in
c′, which implies that µ isn’t fair-with-diversity and thus we have a contradiction. Moreover,
since there are at least n1n3 students of each type t in

⋃
c∈C1

St (µ (c)), there are at least
n1n3k students in

⋃
t∈T
⋃
c∈C1

St (µ (c)). Since qc = n1k and for any i, |Ci| = n3 it follows
that there are exactly n1n3 students of each type t in

⋃
c∈C1

St (µ (c)).
Suppose now that there is a school c′ ∈ C1 such that µ (c) doesn’t enable diversity at c′.

Then there is a type t ∈ T such that |St (µ (c′))| < n1. By the result above we know that
there is a student s of type t such that µ (s) 6∈ C1. By assumption on preferences, c′ �s µ (s),
implying that s justifiably demands a seat in c′, a contradiction.

Step k∗: by induction assumption, for every i ∈ {1, . . . , k∗ − 1} and c ∈ Ci, µ (c) enables
diversity in c. The proof follows the same argument as for step 1, with the difference that in
the instances in which a student s justifiably demands a seat in some school c′ ∈ Ck∗ , that
student is assigned in µ to some school in Ck′ , where k′ > k∗, implying that c′ �s µ (s).

Note, however, that when k∗ = a this argument cannot be made any longer, that is, if
there is a school c′ ∈ Ck such that |St (µ (c′))| < n1, there may not exist a student s of type
t such that c′ �s µ (s).
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